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Automatic literacy assessment is an area of research that has shown significant progress in recent years.
Technology can be used to automatically administer reading tasks and analyze and interpret children’s
reading skills. It has the potential to transform the classroom dynamic by providing useful information to
teachers in a repeatable, consistent, and affordable way. While most previous research has focused on au-
tomatically assessing children reading words and sentences, assessments of children’s earlier foundational
skills is needed. We address this problem in this research by automatically verifying preliterate children’s
pronunciations of English letter-names and the sounds each letter represents (“letter-sounds”). The children
analyzed in this study were from a diverse bilingual background and were recorded in actual kindergarten
to second grade classrooms. We first manually verified (accept/reject) the letter-name and letter-sound ut-
terances, which serve as the ground-truth in this study. Next, we investigated four automatic verification
methods that were based on automatic speech recognition techniques. We attained percent agreement with
human evaluations of 90% and 85% for the letter-name and letter-sound tasks, respectively. Humans agree
between themselves an average of 95% of the time for both tasks. We discuss the various confounding factors
for this assessment task, such as background noise and the presence of disfluencies, that impact automatic
verification performance.
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1. INTRODUCTION

Education is one area in which technology has already made a profound impact by
providing an engaging learning experience to children [Eskenazi 2009]. Computer
games have helped children develop problem-solving skills [Yildirim et al. 2011], and
virtual peers have helped encourage creative thinking and children’s use of imagination
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[Cassell and Ryokai 2001]. Literacy tutors have been developed to track children’s
reading and offer helpful feedback [Mostow et al. 1994; Hagen et al. 2007]. These
technologies have been designed for a range of ages and developmental levels, and for
children with special needs [Cosi et al. 2004].

While much research has focused on developing interactive educational technology,
relatively fewer studies have concentrated on ways to use computer technology to help
educators and teachers directly. We tackle this problem in the context of literacy assess-
ment for young children from a diverse bilingual background that are learning to read
English. Assessment of reading skills is an important aspect of early education [Black
and Wiliam 1998]. Experts agree that one of the most effective assessment frameworks
is formative assessment, where children are repeatedly assessed as they are taught.
This pedagogical framework helps keep the teachers’ goals and the children’s progress
aligned and prevents children from being left behind [Heritage 2007]. Unfortunately,
formative assessment is challenging for a number of reasons. First, assessment often
requires one-on-one time, which teachers may not be able to provide, especially in large
classrooms. Second, formative assessment requires an adaptive approach to teaching,
where teachers are continually adjusting their lesson plans based on the children’s rate
of learning.

Technology can help with this process in a number of ways. First, computers can be
used to administer the various reading assessment tasks in a consistent, repeatable
manner. Second, pronunciation verification systems can be developed to automati-
cally assess the children’s speech using objective signal-based methods (e.g., automatic
speech recognition). And third, these results can be analyzed and displayed to teachers,
so they can track the children’s reading proficiency over time, and adjust their lesson
plans accordingly. In this paper, we concentrate on the second point for two important
English reading tasks: 1) reading the names of the English letters (“letter-names”),
and 2) producing the sounds each letter represents (“letter-sounds”). Whereas most
previous work in automatic literacy assessment has concentrated on children already
reading words and sentences [Mostow et al. 1994; Hagen et al. 2007; Duchateau et al.
2007; Cincarek et al. 2009; Tepperman et al. 2011; Black et al. 2011], early assessment
of children’s foundational reading skills and early interventions are critical for children
to develop into competent readers [Paratore and McCormack 2007].

Children start learning to read English with the alphabet and by producing the
different sounds each letter makes. Letters are the building blocks for written words
in English, and teachers will often refer to them during their lessons. For there to
be successful communication between teachers and students, it is necessary that the
students know the letter-names and are able to read them aloud [McBride-Chang 1999].
Knowing and successfully producing a language’s letter-sounds is an integral part of
learning to read. The concept of phonemic awareness, that is, understanding that words
can be broken into individual sound units, is crucial for a child to successfully decode
words when reading [National Reading Panel 2000]. The letter-sound task assesses
a child’s knowledge of phonemic awareness and a language’s specific letter-to-sound
rules [Blachman et al. 1994]. Multiple language effects, such as when children hailing
from bilingual or multilingual households are learning to read, can complicate the
matter. Children are oftentimes balancing different sets of letter-to-sound rules, since
they may be learning to read in more than one language.

In our previous work, we used automatic speech recognition with assessment-
constrained grammars and letter-specific lexicons to automatically verify letter-name
and letter-sound pronunciations [Black et al. 2008, 2009]. We compared monophone
acoustic hidden Markov models trained on isolated word-reading data vs. held-out
in-domain letter-name and letter-sound data. This paper builds upon our previous
work by: 1) using different data splits and cross-validation to ensure speaker-disjoint
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folds and to maximize the amount of labeled data we have, 2) comparing other au-
tomatic pronunciation verification methods and validating them with both item-level
and child-level metrics, and 3) providing in-depth error analysis to help gain insight
into the challenges of this verification task.

Section 2 describes the corpus we are using in this research. In Section 3, we discuss
how we trained acoustic models for this assessment task. Section 4 discusses the
various pronunciation verification methods we tried. Section 5 describes our results
and provides a discussion. We conclude with future work in Section 6.

2. CORPUS

We utilized speech data from the Technology-Based Assessment of Language and
Literacy (TBALL) Project, which was formed to create automatic literacy assessment
technology for young children in early education from a diverse background [Alwan
et al. 2007; Price et al. 2009]. The TBALL Project’s main goal was to provide a tech-
nological assessment framework to help inform teachers and track children’s progress
on age/grade-specific reading tasks (e.g., from reading letter-names and letter-sounds
aloud, to syllable-blending, word recognition, and reading comprehension tasks). These
reading tasks were administered to children in actual kindergarten to second grade
classrooms in Northern and Southern California. About half of the children were na-
tive American English speakers, with the other half non-native or bilingual speakers of
English from a Mexican-Spanish linguistic background. The children’s demographics
(native language, grade, and gender) were obtained by forms filled out by assenting
parents; most of the demographic information about the children was unknown, since
the parents were not required to provide this information. The TBALL Corpus consists
of speech recorded from a close-talking headset microphone [Kazemzadeh et al. 2005].
Since the reading tests were administered in real classrooms, the background noises
included typical classroom sounds, such as other children’s voices and the teacher’s
voice.

For this work, we analyzed a subset of the data from the letter-name reading task
(recorded in mid-to-late 2007) and the letter-sound reading task (recorded in late 2005
and early 2006). There is no overlap in children between the two tasks, so comparisons
of individual children’s performance across the letter-name and letter-sound tasks are
not possible. When administering these reading tests, one lower-case English letter was
displayed on a computer screen at a time, and the children had up to five seconds to say
the letter-name/letter-sound aloud before the next letter was shown. The children also
had the option of advancing to the next letter before this five-second limit by pressing
a button. The children were tested on all 26 English letters; the order in which the
letters were displayed was random, but this random order was maintained for each
child. During the data collection process, a trained research assistant listened beside
the child, and if the child mispronounced three letters in a row, the assistant manually
stopped the session. This was done to prevent the children from getting too frustrated.

The transition times between letters for each child were automatically recorded
and used to split each child’s audio into single-letter utterances. (For the letter-sound
data, we do not have any utterances for the target letter “e” due to a systematic
recording problem.) These single-letter utterances included both the speech from the
child and silence/noise before and after. As part of this work, we automatically predicted
the overall performance of each child by computing the fraction of letters the child
pronounced correctly. To make this average calculation meaningful, we ignored all
data from children that had fewer than 8 single-letter utterances.

After the considerations above, the remaining data consist of 3431 letter-name
utterances from 168 children and 3507 letter-sound utterances from 153 children.
We manually verified all utterances (accept/reject) using a dictionary of acceptable
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Table I.
The acceptable letter-name and letter-sound dictionaries, constructed with the help of
an expert linguist and teacher. “()” denotes optional phonemes; “|” denotes options

Phonetic Spelling(s) Phonetic Spelling(s)
Letter Name Sound Letter Name Sound
a EY AE n EHN N (AH)
b BIY B (AH) 0 ow AA
c SIY K P PIY P
d DIY D (AH) q KYUW KW (AH)
e 104 EH r AHR R (AH) | ER (AH)
f EHF F S EH S S
g JHIY G (AH) t TIY T
h EYCH HH u Y UW AH
i AY IH v VIY V (AH)
j JHEY JH (AH) w DAHBAHML)YUW W (AH)
k KEY K X EHKS KS
1 EHL L (AH) y W AY Y (AH)
m EHM M (AH) zZ ZIY Z (AH)

Table 1l. Human Evaluation Statistics for the Two Reading Tasks

Statistic Letter-Name  Letter-Sound
Fraction Accepted Utterances 0.7546 0.7305
Fraction Disfluent Utterances 0.0827 0.1690
Avg. Pairwise Evaluator Agreement 0.9538 0.9490

phonetic spellings, constructed with the help of an expert linguist and teacher
(Table I). Acceptable letter-name pronunciations were straightforward to produce, since
there is a one-to-one mapping between an English letter and its correct name pronun-
ciation. However, for the English letter-sounds, vowels have multiple pronunciations,
and some letters’ pronunciation depends on word context (e.g., the “c” in “face” vs. “cat”).
In the letter-sound reading task, the children were instructed to say the “short” vowel
sounds (a: /AE/, e: /EH/, i: /IH/, o: /AA/, u: /AH/) and the letter’s primary pronunciation
(e.g., c:/K/, g: /G/). Only these pronunciations were considered acceptable. For all voiced
consonants in the letter-sound reading task, the children could end with the phoneme
/AH/ (e.g., the letter “b” had two acceptable pronunciations: /B/ and /B AH/).

For both reading tasks, the data were split up and verified by three evaluators,
with 260 utterances common to all. For the letter-sound data, the evaluators were the
first three authors, each of whom has several years of experience working on children’s
literacy assessment research. For the letter-name data, the first author and two trained
researchers manually verified the data. During these human evaluations, the speech
data were organized by child, so the evaluators could adapt to the speaking style of
the children. Evaluators manually verified each letter pronunciation (accept/reject)
and also marked utterances that included disfluencies (e.g., repetitions, false starts,
repairs). When manually verifying disfluent utterances, evaluators were instructed
to accept or reject the final pronunciation only. Inter-evaluator agreement statistics
were computed by having all three evaluators evaluate 10 randomly chosen utterances
for each letter. The chosen agreement metric is called accuracy and is the fraction of
utterances in agreement (Equation (1)). Table IT shows the average statistics from the
human evaluations.

A number of utterances in agreement

o))

number of utterances

In our previous work [Black et al. 2008, 2009], we split the data into two disjoint par-
titions: a test set with 30 utterances per letter and a train set with the remaining data.
We trained in-domain acoustic models, optimized our automatic verification methods
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Table IlI.
Data partitions used in this study, each containing
about 20% of the data for the reading task

Partition
1 2 3 4 5
- DEV; TR 9 TR1 2 TR; o
— TR13 DEV:3 TRy 3 TR13
— TR1 4 TR14 DEV; 4 TR 4
— TR 5 TR 5 TR15 DEV, 5
TEST, TR, TR, TR; TR,

DEVs; TRs:  TRs:  TRsy -
TR5.2 DEV5 TR52 TR5 2 -
TRs 3 TRs3 DEVss TRss -
TR5 4 TR5 4 TR54 DEV54 -
TRs TR, TRs TRs  TEST;s

Table IV.
Letter-name and letter-sound human evaluation and demographic statistics for each
partition. Native language (L1) categories include: English (E), Spanish (S), bilingual (B),
unknown (U); grade categories include: kindergarten (K), first (1), second (2), unknown
(U); gender categories include: female (F), male (M), unknown (U)

Partition
Letter-Name 1 2 3 4 5
Number Utterances 682 683 691 687 688
Fraction Accepted 0.761 0.725 0.758 0.786 0.743
Number Speakers 33 33 34 34 34
L1 (E:S:B:U) 9:12:0:12  12:10:0:11  14:7:0:13 10:10:0:14 11:13:1:9
Grade (K:1:2:U) 29:4:0:0 32:1:0:0 28:5:0:1 32:2:0:0 29:5:0:0
Gender (F:M:U) 17:16:0 20:12:1 12:21:1 15:18:1 22:11:1

Partition
Letter-Sound 1 2 3 4 5
Number Utterances 708 704 706 694 695
Fraction Accepted 0.687 0.733 0.725 0.759 0.760
Number Speakers 31 31 31 30 30
L1 (E:S:B:U) 6:16:1:8 11:10:0:10 10:15:0:6 7:13:0:10 8:13:2:7
Grade (K:1:2:U) 2:15:9:5 7:8:12:4 4:10:13:4 0:10:15:5 3:16:9:2
Gender (F:M:U) 15:12:4 10:17:4 12:15:4 12:13:5 6:22:2

on the train set, and tested these methods on the held-out test set. We showed in Black
et al. [2008] that we needed approximately 70 utterances per letter for the acoustic
models to converge and performance to level off.

In this paper, we split the data into five approximately equal-sized speaker-disjoint
partitions. We made use of all the labeled data through a cross-validation technique to
form train, test, and development sets (Table III). For example, when testing data from
partition 1 (TEST,), we used optimized parameter settings and acoustic models trained
on the other four partitions (TR). These optimal parameters were found by averaging
performance across the four development sets (DEV; 2, DEV; 3, DEV; 4, and DEV; 5),
which in turn used acoustic models trained on data from the other three partitions
(TR1.2, TR1 3, TR; 4, and TRy 5, respectively). We attempted to make the partitions as
balanced as possible, with each having a similar number of children and single-letter
utterances, fraction of accepted utterances, and demographic distribution (Table IV).

3. ACOUSTIC MODELS

For all pronunciation verification methods, we used acoustic methods trained on
children’s speech. This was important since children’s speech has different acoustic
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BGIGG Target BGIGG
Start End
L

Fig. 1. Grammar used to endpoint single letter utterances (BG = background, GG = garbage).

properties and higher variability than adult speech [Lee et al. 1999]. We investigated
two sets of acoustic models in this study: generic acoustic models and in-domain acous-
tic models. Generic left-to-right hidden Markov models (HMMSs) were trained on 19
hours of held-out speech from word-reading and picture-naming tasks, also included as
part of the TBALL Corpus. A total of 38 monophone models were trained on the speech
regions. In addition, a phone-level filler “garbage” model was trained on all speech
segments, and a “background” model was trained on all silent and background noise
regions.

For the in-domain acoustic models, we trained phoneme-level HMMs for each of
the 25 train sets (Table III) using an iterative bootstrap training procedure that is
based on [Young et al. 2006] and explained in the following sentences. Beginning
with prior knowledge of the target phoneme sequence for each audio file, but without
segment-level boundaries, initial models were trained using a flat-start initialization
and the Baum-Welch embedded reestimation algorithm. With these preliminary mod-
els we decoded each target letter-name and letter-sound in the dataset. The resulting
phoneme segmentation times were used to train new HMMs from scratch, this time
using the hypothesized segmentation for model initialization with Viterbi alignment
and then embedded reestimation on each isolated phoneme (rather than over the whole
sequence). Then the target sequences were decoded once more, and the new segmenta-
tion times were used again to train new acoustic models. This process of decoding and
retraining was repeated for five iterations. For the utterances that were accepted by
the evaluators, the target phoneme sequence was assumed to be one of the acceptable
pronunciations, plus optional sequences of background and garbage preceding or fol-
lowing it (see Figure 1, where “Target” was the acceptable letter-name or letter-sound
pronunciation). For the utterances that were rejected by the evaluators, we used a de-
coding grammar consisting of one or more repetitions of the background and garbage
model.

All HMMs were trained on 39-dimensional Mel-frequency cepstral coefficients, with
3 hidden states and 16 Gaussian mixtures per state, using HTK [Young et al. 2006]. The
window length was 25 ms, and the frame rate was 10 ms. Cepstral-mean subtraction
was applied across each single-letter utterance.

4. VERIFICATION METHODS

This section will describe the four pronunciation verification methods we investigated.
Table V provides a brief description of each, with full details in Sections 4.1-4.4. For
all methods, we optimized any parameters across each fold’s four development sets by
maximizing agreement between the human evaluations and the automatic verification
hypotheses (Equation (1)). We then applied these methods with optimal parameter
settings to the held-out test data set and pooled all results to characterize performance
at both the utterance-level and child-level. To compute performance at the utterance-
level, we used accuracy (Equation (1)), and we also borrowed metrics commonly used
in detection theory and binary classification tasks: precision (Equation (2)), recall
(Equation (3)), balanced F-score (Equation (4)). In these equations, a “true positive”
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Table V.
Abbreviations and short descriptions of the four pronunciation verification methods we
investigated for both reading tasks

Abbreviation Short Description (Accept utterance if ...)

Recognition target letter recognized

Lexicon acceptable pronunciation recognized from letter-specific dictionary
Duration duration is longer than letter-specific threshold

GOP Goodness of Pronunciation score is higher than letter-specific threshold

is correctly rejecting a pronunciation.

true positive

= 2
true positive + false positive @)
. true positive 3)
" true positive + false negative
2-P-R
F=———. 4
P+R )

We also wanted to make sure that our assessments were accurate at the child-level.
To estimate how well a child performed overall, we computed the fraction of utterances
the automatic method accepted for the child. To characterize system performance at
the child-level, we computed Pearson’s correlation coefficient between two vectors: one
formed by the fraction of utterances accepted by the automatic method for each child,
and the other corresponding to the fraction of utterances accepted by the evaluators for
each child. It should be noted that this is a relatively simple metric to quantify how well
the automatic method can predict children’s overall performance. See Duchateau et al.
[2007] and Black et al. [2011] for examples of automatic literacy assessment research
that directly models evaluator’s perception of children’s overall reading performance.

4.1. Recognition Method

As a baseline method for pronunciation verification of the letter-names and letter-
sounds, we ran automatic letter recognition on each single-letter utterance using the
acoustic models described in Section 3, the dictionary of acceptable pronunciations
(Table I), and a constrained grammar that allowed for any letter in the dictionary to
be recognized (in addition to optional background/garbage). Therefore, we used the
grammar depicted in Figure 1, where “Target” was “a | b | ... | z”. We found this
grammar structure was best at endpointing the target pronunciation, even in disfluent
and/or noisy utterances. We accepted the pronunciation if the target letter was recog-
nized; otherwise, we rejected the pronunciation. We refer to this baseline method as
“recognition,” since it essentially reduces the letter-name/letter-sound verification task
to a letter-name/letter-sound recognition task.

4.2. Lexicon Method

The recognition method is not optimal for this verification task for a number of reasons.
First, it is designed to detect substitution errors, which is only one of the common types
of errors a child might make. Second, many of the substitution errors are very unlikely
(such as the student confusing “a” with “z”). To remedy this undergeneration and over-
generation of possible cohort pronunciations, we created another dictionary with fore-
seeable unacceptable pronunciations for each letter and for both reading tasks, based
on our previous work [Black et al. 2008, 2009]. These unacceptable pronunciations
fit into, and were assigned to, five pronunciation categories: 1) alternative pronuncia-
tions, that is, replacing a letter-name/letter-sound with an alternative pronunciation of
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Table VI.
Description of the five unacceptable pronunciation classes, with correspond-
ing average cardinality per letter (N) and example entries

Letter-Name Letter-Sound
Pronunciation Class N Example(s) N Example(s)
Alternative pronunciations 0.96 f:/IH F/ 1.35 «¢:/S/, g:/JH/
Visual confusions 0.81 b-d,p-q,h-n 1.08 b-d, p-q, h-n
Auditory confusions 165 f-s,m-n,cz 242 f-s,mm,cz
Spanish-related confusions 1.46 j:/HH EY/ 0.81 u:/UW/
Task confusions 1.73  k:/K/ 1.04 k:/KEY/

a phoneme, 2) visual confusions, that is, saying a letter-name/letter-sound for a letter
that closely resembles the target letter’s shape, 3) auditory confusions, that is, saying
a letter-name/letter-sound for a letter that is phonetically similar to the target letter,
4) Spanish-related confusions, that is, saying the letter-name/letter-sound correctly in
Spanish or saying one or more phonemes with a common Spanish substitution [You
et al. 2005], 5) reading task-related confusions, that is, saying the English letter-name
during the letter-sound task (and vice versa). Example entries and the average cardi-
nality of these unacceptable pronunciation classes are provided in Table VI. Note that
individual unacceptable pronunciations can belong to more than one category.

The second pronunciation verification method we employed is referred to as the
“lexicon” method, since it finds an optimal dictionary for each letter. For each of the
five cross-validations, we found the combination of unacceptable pronunciation classes
that optimized agreement (Equation (1)) across the development sets, for each letter
individually. We again used the grammar shown in Figure 1. However, in this case,
“Target” included only the acceptable and unacceptable pronunciations of the target
letter, along with the background model, instead of all possible letters as in the case
of the recognition method. This background model was included since it helped detect
pronunciation errors caused by the child saying something unexpected or nothing at
all; the background model was found to perform better than the garbage model for this
purpose. This optimized dictionary was then applied to the test data for that fold, and
this process was repeated for all five folds. Separate optimized dictionaries were found
for both sets of acoustic models.

4.3. Duration Method

Another pronunciation verification method we tried was based on an empirical obser-
vation of forced alignment. If a pronunciation is force-aligned to audio in which there
is a poor match (due to either an inaccurate transcript or mismatched acoustic condi-
tions), the pronunciation will oftentimes be aligned to a small temporal region. Related
work in computer-assisted language learning has exploited this phenomenon to extract
duration-based features for utterance verification [van Doremalen et al. 2010]. We hy-
pothesized that utterances that were rejected by evaluators would be poor matches
to acceptable pronunciations of the target letter. Therefore, if we force-aligned only
acceptable pronunciations to rejected utterances using the grammar in Figure 1, the
letter would be more likely to be aligned to a small temporal region, as compared to
utterances that were accepted by evaluators. This is due to the fact that the phoneme
boundaries are chosen to maximize the log-likelihood of the utterance, and so the back-
ground/garbage model dominates the utterance, since it is a better match. Figures 2
and 3 demonstrate this phenomenon when using the in-domain acoustic models.
Indeed, in utterances that were rejected by evaluators, the letter-name’s/letter-sound’s
duration was shorter, on average.

The third automatic verification system we devised, referred to as “duration,” rejects
pronunciations below a letter-specific duration threshold, and accepts pronunciations
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Fig.2. Box plot of letter-name durations for manually accepted (top) and rejected utterances (bottom), based
on forced alignment endpointing of acceptable pronunciations using in-domain acoustic models. The box plot
shows the distribution of durations for each letter-name (the middle circle denotes the median, and the
surrounding bar is bounded by the lower and upper quartile); in general, the rejected utterance durations
are shorter than the accepted ones.
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Fig. 3. Box plot of letter-sound durations for manually accepted (top) and rejected utterances (bottom),
based on forced alignment endpointing of acceptable pronunciations using in-domain acoustic models. The
box plot shows the distribution of durations for each letter-sound (the middle circle denotes the median,
and the surrounding bar is bounded by the lower and upper quartile); in general, the rejected utterance
durations are shorter than the accepted ones.

above this threshold. See Equation (5), where the duration thresholds, Ty..(0), for each
letter [ were chosen to optimize the agreement (Equation (1)) across the development
sets for that particular cross-validation fold.

1, Duration(l) < Tyu()

Reject(l) = { 0, Duration(l) > Tgqu(0). ®
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4.4. GOP Scoring Method

The final pronunciation verification method we tried was a variation of Goodness of
Pronunciation (GOP) scoring. It was first introduced in Witt and Young [2000], and has
been successfully used in many pronunciation evaluation applications [Rasmussen
et al. 2009; Tepperman et al. 2011; Zheng et al. 2007]. In this technique, a word (or
in our case, a letter-name or letter-sound), is decoded using a dictionary with only
acceptable pronunciations. The resulting output will contain phoneme hypotheses,
phoneme boundaries, and log-likelihoods for each decoded phoneme. An unconstrained
phone loop is then decoded across each hypothesized phoneme region. A GOP score for
each phoneme is then computed by subtracting the normalized log-likelihood of the
recognized phoneme to the normalized log-likelihood of the phone loop. Higher GOP
scores pertain to phonemes that are more likely to be pronounced correctly, and lower
GOP scores are correlated with poorly pronounced phonemes. A threshold can be set
to reject recognized phonemes that have GOP scores that are too low. Originally, this
technique was used to find phoneme errors within words that were mispronounced. We
have found that “word-level” GOP scores (or in our case “letter-level”) produced better
results. Letter-level GOP scores are computed by taking the mean GOP score across
all recognized phones.

Equation (6) shows how to compute the GOP phoneme score (O is the acoustic
observation, p is the phone, PL is the phone-loop, and N is the number of frames of
phone p). Equation (7) shows how to compute the GOP letter-level score, by calculating
the mean of the GOP phoneme scores for the letter /. Equation (8) shows how we
thresholded the GOP letter-level score to reject or accept the utterance’s pronunciation.
This letter-dependent GOP threshold, Tgop(/), was chosen to maximize the agreement
(Equation (1)) across the development sets for each fold.

_ 1 P (O|p)
1
GOP() = —— GOP 7
@) |p€l|; (p) (7)

. )1 GOP() < TGOP(Z)
Reject(l) = { 0. GOP() > Toop(D). (8)

5. RESULTS & DISCUSSION

Results are shown in Table VII for the four verification methods. The performance of the
four methods is higher for the letter-name task, implying this is an easier verification
task, as compared to the letter-sound task. This makes intuitive sense, since the letter-
sounds are temporally shorter and have greater variability in their pronunciations
(and are less natural to produce in isolation). One of the principal results is that the
lexicon method performed best, in terms of most of the chosen metrics, for both reading
tasks. We also see that, in general, the generic acoustic models (trained on word-level
TBALL data), performed slightly better than the in-domain acoustic models for most
verification methods; this may be due to the fact that the generic models were trained
on more hours of speech.

To test whether the differences in performance are statistically significant, we used
two statistical tests: a one-sided difference in proportions test on the accuracy metric
(to test differences in utterance-level performance), and a difference in correlation
coefficient test on the child-level correlation metric. For both reading tasks and all four
pronunciation verification methods, the performance between the two sets of acoustic
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Table VII.
Letter-name and letter-sound performance using the four proposed pronunciation
verification methods and the two different sets of acoustic models. We compare per-
formance against human agreement (Table Il) and a simple voting baseline method,
which accepted all letter-name and letter-sound utterances

Letter-Name Methods A P R F Corr
Human Agreement 0.9538 - - - -
Voting Baseline 0.7546  0.0000  0.0000 - -
Recognition (generic AMs) 0.7709 0.5189 0.9121 0.6615 0.8549
Recognition (in-domain AMs) 0.7473 0.4919 0.9002 0.6362 0.8313
Lexicon (generic AMs) 0.8965 0.8322 0.7245 0.7746 0.9207
Lexicon (in-domain AMs) 0.8895 0.8293 0.6924 0.7547 0.9104
Duration (generic AMs) 0.8630 0.7934 0.5974 0.6816 0.8023
Duration (in-domain AMs) 0.8566 0.8081 0.5451 0.6511 0.8269
GOP (generic AMs) 0.8825 0.7585 0.7648 0.7617 0.9195
GOP (in-domain AMs) 0.8802 0.7964 0.6876 0.7380 0.8974
Letter-Sound Methods A P R F Corr
Human Agreement 0.9490 - - - -
Voting Baseline 0.7305 0.0000 0.0000 - -
Recognition (generic AMs) 0.6812 0.4549 0.9238 0.6096 0.8399
Recognition (in-domain AMs) 0.7149 0.4848 0.9270 0.6366 0.8326
Lexicon (generic AMs) 0.8466 0.7573 0.6339 0.6901 0.8561
Lexicon (in-domain AMs) 0.8415 0.7653 0.5937 0.6687 0.8757
Duration (generic AMs) 0.8186 0.7433 0.4995 0.5975 0.7864
Duration (in-domain AMs) 0.8004 0.7590 0.3799 0.5063 0.7578
GOP (generic AMs) 0.8340 0.7055 0.6593 0.6816 0.8530
GOP (in-domain AMs) 0.8358 0.7204 0.6381 0.6768 0.8571

models was not significant (all p > 0.1). This implies that similar system performance
can be achieved in two common training scenarios: 1) where we have a sufficient
amount of representative children’s speech reading words aloud (not necessarily letter-
names/letter-sounds), and 2) where we have a sufficient amount of in-domain data of
children reading letter-names/letter-sounds.

We also tested to see if there is a significant difference between the best performing
method (the lexicon method with the generic acoustic models) and the other verifi-
cation methods. For the letter-name reading task, this best method has significantly
higher accuracy, as compared to the voting baseline method, the recognition method,
and the duration method (all p < 0.001); there is no significant difference between the
GOP method (p > 0.05). The lexicon method still performs significantly worse than the
interevaluator agreement (p < 0.001). Looking at the child-level metric, the lexicon
method has a significantly higher correlation coefficient, as compared to the duration
method (p < 0.001) and the recognition method (p < 0.005); there is no significant
difference between the lexicon method and the GOP method in terms of child-level
correlation (p > 0.1). For the letter-sound reading task, we see similar trends when
comparing the accuracy utterance-level metric. The lexicon method performs signif-
icantly better than the baseline voting, duration, and recognition methods (all p <
0.001), significantly worse than human agreement (p < 0.001), and has no significant
difference in performance with the GOP method (p > 0.1). Comparing the child-level
metric for the letter-sound task, the lexicon method only significantly outperforms the
duration method, with all other p > 0.1. This suggests that even when utterance-level
performance suffers, these automatic methods are still able to estimate the overall
children’s performance (as captured by the fraction of utterances that were deemed
acceptable pronunciations) with a high correlation to human evaluators.

ACM Transactions on Speech and Language Processing, Vol. 7, No. 4, Article 15, Publication date: August 2011.



15:12 Matthew P. Black et al.

The recognition method had the highest recall but suffered from the lowest precision;
therefore, it was able to detect pronunciation errors well, but rejected many acceptable
pronunciations. As mentioned before, this is most likely due to the fact that there
are too many cohort pronunciations in the dictionary for this method. Conversely, the
duration method performed competitively in terms of accuracy and precision, but it
performed worse in terms of recall and correlation with the evaluators. The poor recall
statistic means this method had many missed detections and was unable to reject a
large fraction of the unacceptable pronunciations. The lower child-level correlation is
most likely due to inherent differences in the children’s speaking rate, thus producing
several more errors for some children, leading to a lower correlation at the child-level
with human evaluators.

The GOP method of verification was competitive with the lexicon method (with no
significant difference in performance as described previously). One advantage of GOP
scoring is that it does not involve the creation of a specialized lexicon to detect errors,
but the downside is that a threshold must be explicitly found. Importantly, the resulting
GOP output may be less instructive than the lexicon method. Whereas the GOP method
only quantifies overall “goodness of pronunciation,” the lexicon method explicitly shows
the pronunciation error (and automatically classifies it according to the dictionary en-
try, e.g., Spanish-related confusion). This kind of high-level information might be very
useful for a teacher, since it provides insight into the types of categorical errors the
children are making. For example, for the letter-name task (when using the lexicon
method and the generic acoustic models), the breakdown in the unacceptable pronun-
ciation classes was as follows: 66.3% visual confusions, 19.2% task-related confusions,
7.6% Spanish-related confusions, 5.0% auditory confusions, and 1.9% alternative pro-
nunciations. For the letter-sound task, the breakdown in the recognized errors was
as follows: 45.4% visual confusions, 29.4% alternative pronunciations, 18.2% auditory
confusions, 3.7% task-related confusions, and 3.4% Spanish-related confusions.

The large disparity between human agreement and the automatic methods is most
likely due to a number of reasons. The letter-names and letter-sounds are usually less
than half a second in duration (Figures 2 and 3), which means the verification is based
on very little acoustic evidence. In addition, since we are verifying individual letter pro-
nunciations, there is no contextual information we can use, as is oftentimes exploited in
automatic speech recognition (e.g., with language models). Also, while the evaluators
had the ability to adapt to the speaking style of the children, there was no analo-
gous adaptation for the automatic verification methods. Incorporating acoustic model
adaptation for each child can be explored in the future. Lastly, since the audio was
recorded in real classrooms, it has variable noise sources, which make automatic verifi-
cation challenging. We analyzed the effect that noise played on automatic performance
by estimating the signal-to-noise ratio (SNR) for each utterance using Equation (9),
where Ayrge: is the root mean square (RMS) amplitude within the endpointed target
word and Apacrground is the RMS amplitude within the regions aligned to the background
model.

Atarget

SNR == 20 loglo Ab .
ackground

9)

Table VIII shows that utterances in which the automatic system (lexicon method
with generic acoustic models) erred had a mean SNR that was significantly lower than
utterances in which the automatic system agreed with the evaluators. This means
that either the background regions had higher relative RMS energy in these erred
utterances and/or that the target word pronunciation was not properly endpointed.
Robustness to noise and accurate endpointing of children’s speech is an area of fu-
ture research. We can also see in this table that the average SNR for the letter-sound
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Table VIII.
SNR statistics comparing when the automatic system agrees with hu-
man evaluators (“correct”) and when it does not agree (“error”). The
mean SNR for “error” utterances is significantly lower than for “correct”
utterances, using a one-sided unpaired t test

SNR statistics

System o
Reading Task  correct/error N Mean SD p
correct 3076 18.38 7.806
Letter-Name error 355 14.69 8548 <0001
correct 2969 17.25 8.498
Letter-Sound error 538 1245 9780 <0001
Table IX.

The probabilities that the automatic system is correct, conditioned on the
fluency of the utterance. The system is more likely to err on disfluent
utterances, although this difference is only significant with the letter-sound
task (using a one-sided difference in binomial proportions test)

Reading Task  Pr(correct| fluent)  Pr(correct|disfluent) p
Letter-Name 0.8984 0.8759 > 0.1
Letter-Sound 0.8615 0.7723 < 0.001

utterances was lower than the average SNR for the letter-name utterances; this differ-
ence was significant with p < 0.001. This implies that noisier conditions may be another
contributing factor in the relatively lower automatic performance for the letter-sound
task.

We also analyzed the effect that disfluencies had on system performance. As men-
tioned in Section 2, a portion of the children’s utterances contained disfluent responses,
mostly due to the children repeating themselves or self-correcting. It should be noted
that there were twice as many disfluent utterances in the letter-sound task (Table II).
These disfluencies can be viewed as noise for this verification task, since evaluators
were instructed to ignore any disfluencies and only rate the final pronunciation. We
used the grammar shown in Figure 1 to help endpoint these disfluencies by allowing for
repetitions of the garbage or background model to be recognized. To test whether these
disfluencies significantly affected system performance, we compared the probability of
a system error, given the utterance was fluent vs. the probability of a system error, given
the utterance was disfluent. Table IX shows that disfluencies had no significant effect
on performance for the letter-name task, which implies that the disfluencies were ei-
ther innocuous (e.g., repetitions) or were successfully filtered out with the grammar. On
the other hand, system performance was significantly worse for disfluent letter-sound
utterances, suggesting disfluencies were not filtered out by using this grammar and
may have been incorrectly endpointed as the target word for some utterances. One ex-
planation for this difference could be that disfluencies are inherently more acoustically
similar (and hence, more confusable) to letter-sounds, as compared to letter-names.

Lastly, Tables X and XI show both human evaluator statistics (the fraction of utter-
ances accepted) and system performance (lexicon method with generic acoustic models)
across letters and demographics for the letter-name and letter-sound verification tasks,
respectively. We see in the letter-name task that children performed best on the let-
ter “0” and worst on the letter “q” (oftentimes confusing this letter with the letter “p”
due to the similar shape). Interestingly, automatic performance was best, in terms of
accuracy and F-score, for the letter “q.” Some of the worst performance statistics for
the letter-name task occurred for the letters “m” and “n,” which may be due to the
acoustic similarities of the phonemes /M/ and /N/. For the letter-sound task, children
performed best for the letter “s” and again performed worst for the letter “q.” Automatic

performance was best, in terms of accuracy, for the letter “s,” and in terms of F-score
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Table X.
Letter-name performance across letters and demographics when using the “lex-
icon” pronunciation verification method and generic acoustic models. N is the
number of utterances; Frac Accept is the fraction of utterances accepted by the
evaluators; A, P, R, and F is the automatic performance (Equations (1)—(4))

Letter N Frac Accept A P R F

a 129 0.7984 0.9380 0.9091 0.7692 0.8333
b 130 0.7154 0.8615 0.8065 0.6757 0.7353
c 121 0.8264 0.8926 0.7500 0.5714 0.6486
d 127 0.6614 0.8189 0.8333 0.5814 0.6849
e 134 0.8358 0.9254 0.7308 0.8636 0.7917
f 145 0.8690 0.9379 0.9167 0.5789 0.7097
g 136 0.5515 0.8971 0.9273 0.8361 0.8793
h 120 0.7250 0.8667 0.8148 0.6667 0.7333
i 136 0.7794 0.9559 0.9286 0.8667 0.8966
j 122 0.6803 0.8279 0.7647 0.6667 0.7123
k 126 0.8651 0.9524 0.8667 0.7647 0.8125
1 142 0.5986 0.9014 0.8772 0.8772 0.8772
m 159 0.8491 0.8805 1.0000 0.2083 0.3448
n 132 0.8106 0.7727 0.3913 0.3600 0.3750
0 137 0.9635 0.9416 0.3846 1.0000 0.5556
p 133 0.7895 0.9248 0.8462 0.7857 0.8148
q 140 0.3214 0.9857 0.9895 0.9895 0.9895
r 127 0.7795 0.8268 0.6667 0.4286 0.5217
S 144 0.8542 0.8403 0.4444 0.3810 0.4103
t 138 0.6522 0.8406 0.7826 0.7500 0.7660
u 132 0.7500 0.9545 0.9091 0.9091 0.9091
v 127 0.7402 0.9134 0.9583 0.6970 0.8070
w 117 0.7692 0.8889 0.8500 0.6296 0.7234
X 119 0.8824 0.9244 1.0000 0.3571 0.5263
y 131 0.7405 0.9466 0.9091 0.8824 0.8955
zZ 127 0.8268 0.8819 0.6667 0.6364 0.6512
L1 N Frac Accept A P R F

English 1113 0.8347 0.9263 0.7802 0.7717 0.7760
Spanish 1042 0.7428 0.8964 0.8509 0.7239 0.7823
Grade N Frac Accept A P R F

Kindergarten 3028 0.7526 0.8937 0.8280 0.7196 0.7700
First 378 0.7540 0.9127 0.8659 0.7634 0.8114
Gender N Frac Accept A P R F

Female 1776 0.7337 0.8913 0.8483 0.7209 0.7794
Male 1562 0.7785 0.9040 0.8101 0.7399 0.7734

for the letter “g.” Automatic performance was worst, in terms of accuracy, for the letter
“i,” and in terms of precision, recall, and F-score, for the letter “v”; this was most likely
due to a lack of training data for the phoneme /V/.

Comparing children’s performance across demographics, the Spanish-speaking chil-
dren performed significantly worse in both English reading tasks (both p < 0.001).
There was no significant difference across grades for both reading tasks (both p > 0.1).
For this particular subset of children, males significantly outperformed females for
both reading tasks (both p < 0.005). Comparing system performance across the chil-
dren’s demographics, there was only one bias: the automatic system (lexicon method
with generic acoustic models) erred significantly less for native English speakers, com-
pared to Spanish-speaking children for the letter-name task (p < 0.05), with all other
p > 0.1. Training separate sets of acoustic models for native English and Spanish
speakers may help reduce this performance difference. But the fact that the automatic
system was largely unbiased to demographic information is most likely due to the
fact that the acoustic models were trained on speech from the TBALL Corpus, so each
demographic appearing in the data was represented well.
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Table XI.
Letter-sound performance across letters and demographics when using the
“lexicon” pronunciation verification method and generic acoustic models.
N is the number of utterances; Frac Accept is the fraction of utterances
accepted by the evaluators; A, P, R, and F is the automatic performance
(Equations (1)—(4))

Letter N Frac Accept A P R F

a 116 0.5345 0.8448 0.9091 0.7407 0.8163
b 145 0.7931 0.9310 0.9167 0.7333 0.8148
c 139 0.6259 0.8273 0.7188 0.8846 0.7931
d 139 0.7770 0.8345 0.7500 0.3871 0.5106
f 148 0.8716 0.8986 0.7500 0.3158 0.4444
g 142 0.6338 0.9085 0.8421 0.9231 0.8807
h 147 0.7483 0.8163 0.5926 0.8649 0.7033
i 125 0.5680 0.7520 0.8108 0.5556  0.6593
j 137 0.7007 0.8613 0.8438 0.6585 0.7397
k 141 0.8440 0.8794 0.6316 0.5455 0.5854
1 145 0.6966 0.7655 0.6316 0.5455 0.5854
m 151 0.9139 0.9272 0.6250 0.3846 0.4762
n 150 0.9000 0.9133 0.5714 0.5333 0.5517
0 119 0.6218 0.8067 0.8438 0.6000 0.7013
p 144 0.7986 0.8681 0.7083 0.5862 0.6415
q 141 0.4681 0.7801 0.8548 0.7067 0.7737
r 152 0.7368 0.7961 0.7647 0.3250 0.4561
s 150 0.9400 0.9467 0.6000 0.3333 0.4286
t 141 0.8085 0.9078 0.8889 0.5926 0.7111
u 123 0.5122 0.7886 0.8542 0.6833 0.7593
v 142 0.8521 0.7676  0.2500 0.2857  0.2667
w 145 0.7793 0.8069 0.5714 0.5000 0.5333
X 139 0.6906 0.7842 0.6970 0.5349 0.6053
y 140 0.5000 0.8500 0.9455 0.7429 0.8320
z 146 0.7945 0.8630 0.6667 0.6667 0.6667
L1 N Frac Accept A P R F

English 966 0.7805 0.8727 0.7432 0.6415 0.6886
Spanish 1538 0.7217 0.8498 0.8069 0.6051 0.6916
Grade N Frac Accept A P R F

First 1364 0.7449 0.8512 0.7474 0.6293 0.6833
Second 1346 0.7615 0.8685 0.7791 0.6262 0.6943
Gender N Frac Accept A P R F

Female 1230 0.6675 0.8415 0.8497 0.6357 0.7273
Male 1854 0.7799 0.8635 0.7183 0.6250 0.6684

6. CONCLUSION & FUTURE WORK

Our research aims to enable automated, formative assessment of children’s reading
abilities that will inform teachers and educators. Early interventions of children’s
reading proficiency requires assessment of children’s foundational reading skills. In
this paper, we automatically verified children reading letter-names and letter-sounds
aloud, two critical reading tasks that children need to master before they learn to read
words and sentences.

We investigated four automatic verification methods. The first method, “recognition,”
used a speech recognition approach where the letter names and sounds were recognized
from a loop grammar. The second method, “lexicon,” used a specific dictionary for each
target item that included variants labeled as correct and incorrect. The third method,
“duration,” used the segmentation from forced-alignment to empirically separate cor-
rect utterances, which tended to have longer durations, from incorrect utterances,
which tended to be shorter. The fourth method, “GOP” (Goodness of Pronunciation),
implemented a variation of the GOP scoring method from previous studies that was
adapted to our task. We found that the lexicon and GOP methods performed best, while
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the recognition and duration methods performed worse, but showed some strong points
among our different metrics. We found no significant difference in performance when
using acoustic models trained on words spoken by children, as compared to models
trained directly on letter-name/letter-sound speech.

Automatic performance was significantly lower than interevaluator agreement for
both reading tasks. As discussed in Section 5, there are many actions we can take to im-
prove verification performance: increased noise robustness, improved target word end-
pointing, explicit disfluency detection, and child-adapted language-dependent acoustic
models. Fusion of the four verification methods explored in this paper is also an area
of future research. We tried combining the methods by cascading classifiers and incor-
porating duration information into the GOP score, but none of these fusion techniques
were able to outperform the lexicon method. We feel a method that does not rely on
automatic speech recognition might provide orthogonal information; possible features
include prosodic cues (e.g., pitch, energy) and letter-specific properties (e.g., voice onset
time [Kazemzadeh et al. 2006]). These acoustic information sources, along with the
children’s demographics, could also be used to train a cognitive model that assesses
children’s performance on the reading task, such as the one used in Tepperman et al.
[2011]. This future work might further reduce the gap between automatic verification
performance and interevaluator agreement and could provide additional high-level
information that is useful for educational purposes.

Automating the assessment of other widely administered reading tasks for young
children (e.g., word recognition, reading comprehension) and analyzing children’s per-
formance across reading tasks is another area of current and future research. Finally,
greater emphasis on integrating automated reading assessment and reading tutors into
classroom reading instruction is needed for continued progress in automated literacy
assessment research.
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